

RETOS DE LA VITICULTURA Y LA ENOLOGÍA EN LA REGIÓN DE MURCIA

MUSEO DEL VINO DE JUMILLA

Av. de José Sánchez Cerezo, 30520 Jumilla, Murcia 19 de mayo de 2025

Mejora de la uva de vinificación frente a estreses

Dra. Leonor Ruiz García

Equipo de Mejora Genética Molecular

Diego José Fernández López Ana María Fuentes Denia Adrián Yepes Hita Mercedes Dabauza Micó

CRUZAMIENTOS, REGISTRO, AUTORIZACIÓN Y COMERCIALIZACIÓN DE NUEVAS VARIEDADES

CRUZAMIENTOS, REGISTRO, AUTORIZACIÓN Y COMERCIALIZACIÓN DE NUEVAS VARIEDADES

OBJETIVOS

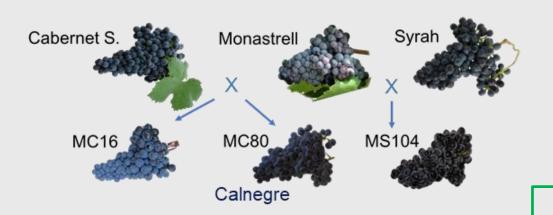
- □ Resistencia a estreses abióticos (sequía)
 - □ Tolerante a altas temperaturas
 - □ Tolerante a la escasez de agua

- □ Resistencia a estreses bióticos (enfermedades)
 - □ Tolerante a mildiu
 - □ Tolerante a oídio

Productivas ycon calidad enológica

RESISTENCIA A LA SEQUÍA: TEMPERATURAS ALTAS Y ESCASEZ DE AGUA

Finca experimental del IMIDA


'Hacienda Nueva' (Chaparral)

2015: R-110

2016: injerto 12 cruces

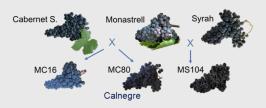
Parcela en producción 2018

Riego controlado / Secano

- Fenológicos (brotación, floración, envero, maduración)
- Productivos
- Estado hídrico (Ψ_S)
- Eficiencia en el uso del agua
- Calidad de la uva y del vino
- Digitalización: balance energía humedad suelo

N, P, K - fertilización

Mecanismos de Respuesta a la Sequía ✓ Metabolitos y hormonas


✓ Expresión de genes

RESISTENCIA A LA SEQUÍA: TEMPERATURAS ALTAS Y ESCASEZ DE AGUA

Secano (2022-2024)		Envero	Vendimia				
	Ψs	A_N/g_S	Producción	⁰Baumé	рΗ	Acidez Total	CFT piel-pepita
Genotipo	(MPa)	(µmol CO ₂ mol H ₂ O ⁻¹)	(Kg/ha)			(g/L tartárico)	(mg/Kg Uva)
Monastrell	-1,31	101	3.198	13,6	4,09	2,95	1.811
Cabernet S.	-1,31	104	4.815	14,3	3,92	3,09	2.366
Syrah	-1,39	96	4.603	14,9	4,10	3,45	2.828
MC16	-1,22	100	4.899	14,7	3,97	4,32	2.438
MC80	-1,19	103	5.994	12,9	3,89	3,22	4.604
MS104	-1,23	110	5.783	11,3	3,83	3,93	2.598

- ✓ MC80 (Calnegre): calidad fenólica
- ✓ MS104: vinos bajo grado alcohólico

RESISTENCIA A LA SEQUÍA: TEMPERATURAS ALTAS Y ESCASEZ DE AGUA

Secano (2022-2024)		Envero	Vendimia				
	Ψs	A _N /g _s	Producción	⁰Baumé	рΗ	Acidez Total	CFT piel-pepita
Genotipo	(MPa)	(µmol CO ₂ mol H ₂ O ⁻¹)	(Kg/ha)			(g/L tartárico)	(mg/Kg Uva)
Monastrell	-1,31	101	3.198	13,6	4,09	2,95	1.811
Cabernet S.	-1,31	104	4.815	14,3	3,92	3,09	2.366
Syrah	-1,39	96	4.603	14,9	4,10	3,45	2.828
MC16	-1,22	100	4.899	14,7	3,97	4,32	2.438
MC80	-1,19	103	5.994	12,9	3,89	3,22	4.604
MS104	-1,23	110	5.783	11,3	3,83	3,93	2.598

✓ MC80 (Calnegre): calidad fenólica

✓ MS104: vinos bajo grado alcohólico

NUEVA PLANTACIÓN EN SECANO - 10 VARIEDADES NUEVAS:

2025: R-110 Portainjerto

2026: injerto variedades

en campo

MYRTIA, CALNEGRE, GEBAS, QUÍPAR, CARMOLÍ, MS104

CALBLANQUE, MC69, MV67, MT103

CONTROLES:

MONASTRELL, CABERNET S., SYRAH, TEMPRANILLO

VERDEJO

NUEVAS VARIEDADES DESCENDIENTES DE MONASTRELL APIRENAS: VINOS CON MENOR GRADO ALCOHÓLICO y MENOS ASTRIGENTES

Selecciones tintas y Selecciones blancas (programa de mejora)

Variedades apirenas

PCR

5 preselecciones blancas (uva)Preselecciones tintas (en progreso)

Multiplicación – elaboración vino

RESISTENCIA A ENFERMEDADES: MILDIU Y OÍDIO

Ren (resistencia a oídio)

Rpv (resistencia a mildiu)

Regent: Ren3, Ren9, Rpv3

Kishmish v.: Ren1

Solaris: Ren3, Ren9, Rpv3, Rpv10

[(Mostrell x Regent) x Kishmish vatkana] - MRomK (Ren1; Ren3; Ren9; Rpv3) - 33 plantas en campo

[(Mostrell x Regent) x Solaris] - MRomS (Ren3; Ren9; Rpv3; Rpv10) - 30 plantas en campo

RESISTENCIA A ENFERMEDADES: MILDIU Y OÍDIO

Shield4Grape
https://shield4grape.eu/

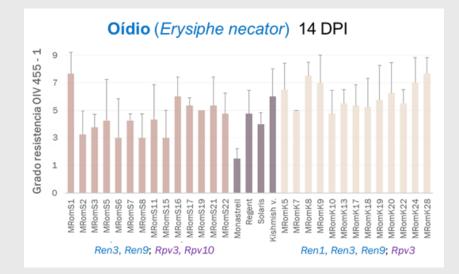
Ren (resistencia a oídio)

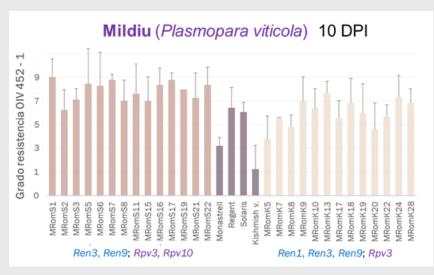
Rpv (resistencia a mildiu)

Regent: Ren3, Ren9, Rpv3

Kishmish v.: Ren1

Solaris: Ren3, Ren9, Rpv3, Rpv10


[(Mostrell x Regent) x Kishmish vatkana] - MRomK (Ren1; Ren3; Ren9; Rpv3) - 33 plantas en campo

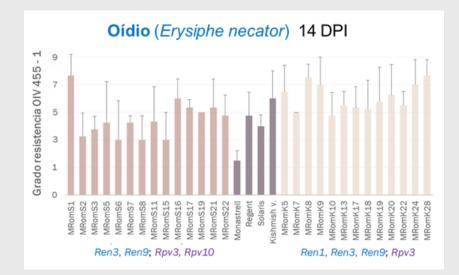

[(Mostrell x Regent) x Solaris] - MRomS (Ren3; Ren9; Rpv3; Rpv10) - 30 plantas en campo

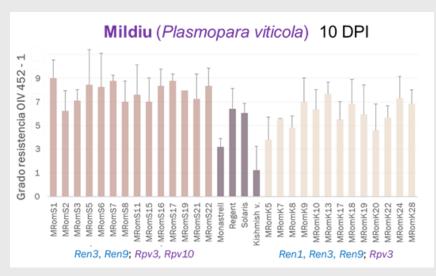
Evaluación del grado de resistencia a oídio y mildiu de MRomK y MRomS

Ren (resistencia a oídio)

Rpv (resistencia a mildiu)

DPI: días post-inoculación


Regent: Ren3, Ren9, Rpv3


Kishmish v.: Ren1

Solaris: Ren3, Ren9, Rpv3, Rpv10

Genotipos prometedores para la resistencia tanto a Oídio como a Mildiu

Genotipo	Oídio (14 DPI)		Mildiu (10 DPI)		
	OIV455-1 valor	Grado de resistencia (loci)	OIV452-1 valor	Grado de resistencia (loci)	
Monastrell	3	Bajo (-)	3	Bajo (-)	
Regent	5	Medio (Ren3; Ren9)	7	Elevado (Rpv3)	
Solaris	5	Medio (Ren3; Ren9)	7	Elevado (Rpv3; Rpv10)	
Kishmish v.	7	Elevado (Ren1)	1	Muy bajo (-)	
MRomS1	7	Elevado (Ren3; Ren9)	9	Muy elevado (Rpv3; Rpv10)	
MRomS16	7	Elevado (Ren3; Ren9)	9	Muy elevado (Rpv3; Rpv10)	
MRomK9	7	Elevado (Ren1; Ren3; Ren9)	7	Elevado (Rpv3)	
MRomK24	7	Elevado (Ren1; Ren3; Ren9)	7	Elevado (Rpv3)	
MRomK28	7	Elevado (Ren1; Ren3; Ren9)	7	Elevado (Rpv3)	

Ren (resistencia a oídio)

Rpv (resistencia a mildiu)

DPI: días post-inoculación

Regent: Ren3, Ren9, Rpv3

Kishmish v.: Ren1

Solaris: Ren3, Ren9, Rpv3, Rpv10

Genotipos prometedores para la resistencia tanto a Oídio como a Mildiu

Genotipo	Oídio (14 DPI)		Mildiu (10 DPI)		
	OIV455-1 valor	Grado de resistencia (loci)	OIV452-1 valor	Grado de resistencia (<i>loci</i>)	
Monastrell	3	Bajo (-)	3	Bajo (-)	
Regent	5	Medio (Ren3; Ren9)	7	Elevado (Rpv3)	
Solaris	5	Medio (Ren3; Ren9)	7	Elevado (Rpv3; Rpv10)	
Kishmish v.	7	Elevado (Ren1)	1	Muy bajo (-)	
MRomS1	7	Elevado (Ren3; Ren9)	9	Muy elevado (Rpv3; Rpv10)	
MRomS16	7	Elevado (Ren3; Ren9)	9	Muy elevado (Rpv3; Rpv10)	
MRomK9	7	Elevado (Ren1; Ren3; Ren9)	7	Elevado (Rpv3)	
MRomK24	7	Elevado (Ren1; Ren3; Ren9)	7	Elevado (Rpv3)	
MRomK28	7	Elevado (Ren1; Ren3; Ren9)	7	Elevado (Rpv3)	

'MRomKS'

(Ren1; Ren3; Ren9; Rpv3; Rpv10)

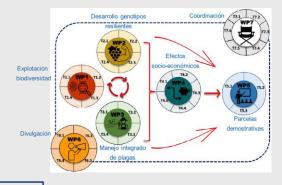
RESUMEN

ESTUDIO RESISTENCIA SEQUÍA: DOS SELECCIONES – CALNEGRE (MC80) Y MS104

NUEVA PLANTACIÓN EN SECANO: 10 VARIEDADES NUEVAS

PRESELECCIONES APIRENAS: 5 (ELABORACIÓN VINOS BLANCOS Y CON BAJO GRADO ALCOHÓLICO)

PROGRAMA MEJORA EN PROGRESO


RESISTENCIA OÍDIO Y MILDIU: 5 PRESELECCIONES RESISTENCIA ELEVADA - MROMS Y MROMK

PROGRAMA MEJORA EN PROGRESO — CONTROL INTEGRADO - BIODIVERSIDAD

PARCELAS DEMOSTRATIVAS

WP4: Encuesta Adopción de Nuevas Técnicas de Mejora Leader: Lara Agnoli (Burgundy School of Business in France)

Resultados preliminares: 65 encuestas España

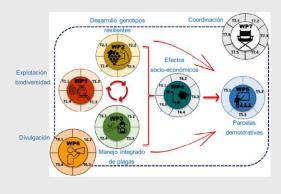
Región	Número
Andalucía	5
Aragón	2
Cantabria	1
Castilla La Mancha	7
Castilla y León	6
Comunidad Madrid	2
Comunidad Valenciana	2
Galicia	2
La Rioja	16
Islas Baleares	2
Navarra	6
País Vasco	5
Región de Murcia	5
Otras	4

Perspectiva de los productores españoles

Factores <u>impulsores</u> y <u>barreras</u>:

- Aceptación tener mas información y ver resultados
- Necesidad de adaptación al CC temen perder la identidad cultural, varietal y territorial
- Herramienta necesaria afrontar CC aplicación cautelosa y bien justificada
- Confianza ciencia y la biotecnología se necesita comunicación más clara
- Plan de adopción respetar la autonomía de los productores y no imponer soluciones.

(Agnoli et al. en preparación)


Linkedin (https://www.linkedin.com/company/shield4grape-project/posts/?feedView=all), Twitter (https://x.com/shield4grape),

Instagram (https://www.instagram.com/shield4grape?igsh=dXR5NGd3NHJhdmc=).

WP3: Manejo integrado plagas y enfermedades

Leader: Walter Chitarra (CREA)

AF5: Fertilizante foliar

<u>Formulación</u>: etilenglicol enriquecida con potasio y tocoferol.

<u>Aplicación</u>: a principios temporada (8-10 aplicaciones, 0.5 litros/ha y tratamiento)

Resultados positivos: mitigación desarrollo yesca

Reduce la incidencia: 16%

Reduce la severidad: 14%

- Activa las respuestas de defensa sistémicas
- Prepara la planta y mejora su resistencia a patógenos incluidos los asociados a la yesca

(Luca N. and Walter Ch. en preparación)

Linkedin (https://www.linkedin.com/company/shield4grape-project/posts/?feedView=all),
Twitter (https://x.com/shield4grape),

Instagram (https://www.instagram.com/shield4grape?igsh=dXR5NGd3NHJhdmc=).

Agradecimientos

HORIZON-CL6-2023-BIODIV-01 NUMBER 101135088

MEJORA GENÉTICA MOLECULAR i i i

GENÉTICA Y MEJORA DE LA VID: BREEDVITIS

PROTECCIÓN Y PRODUCCIÓN VEGETAL NEIKER

ADRIÁN MARTÍNEZ CUTILLAS

J. IGNACIO FERNÁNDEZ F.

CELIA MARTÍNEZ MORA

JOSÉ A. MARTÍNEZ JIMÉNEZ

MEJORA GENÉTICA MOLECULAR

ENOLOGÍA Y VITICULTURA

LABORATORIO ENOLÓGICO

SISTEMAS INFORMACIÓN GEOGRÁFICA Y TELEDETECCIÓN

RIEGO Y FISIOLOGÍA DEL ESTRÉS

CONTROL SANITARIO DE VIRUS VEGETALES

Muchas gracias por su atención

Mejora de la uva de vinificación frente a estreses Leonor Ruiz García (<u>leonor.ruiz@carm.es</u>) 968 36 85 84